Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lemon, Katherine P (Ed.)ABSTRACT Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogenStaphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential inBacillus subtilisunless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential inS. aureusupon Fe deprivation. Nullfuralleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest thatfpawas recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interactedin vivo, and Fpa decreased the DNA-binding ability of Furin vitro. Fpa bound Fe(II)in vitrousing oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogenStaphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations thatS. aureususes to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, inS. aureus, alleviation requires the presence of Fpa.more » « lessFree, publicly-accessible full text available November 13, 2025
-
Bergkessel, Megan; Newman, Dianne K. (Ed.)ABSTRACT Pseudomonas aeruginosa is a human pathogen that relies on quorum sensing to establish infections. The PqsE quorum-sensing protein is required for P. aeruginosa virulence factor production and infection. PqsE has a reported enzymatic function in the biosynthesis of the quorum-sensing autoinducer called PQS. However, this activity is redundant because, in the absence of PqsE, this role is fulfilled by alternative thioesterases. Rather, PqsE drives P. aeruginosa pathogenic traits via a protein-protein interaction with the quorum-sensing receptor/transcription factor RhlR, an interaction that enhances the affinity of RhlR for target DNA sequences. PqsE catalytic activity is dispensable for interaction with RhlR. Thus, the virulence function of PqsE can be decoupled from its catalytic function. Here, we present an immunoprecipitation-mass spectrometry method employing enhanced green fluorescent protein-PqsE fusions to define the protein interactomes of wild-type PqsE and the catalytically inactive PqsE(D73A) variant in P. aeruginosa and their dependence on RhlR. Several proteins were identified to have specific interactions with wild-type PqsE while not forming associations with PqsE(D73A). In the Δ rhlR strain, an increased number of specific PqsE interactors were identified, including the partner autoinducer synthase for RhlR, called RhlI. Collectively, these results suggest that specific protein-protein interactions depend on PqsE catalytic activity and that RhlR may prevent proteins from interacting with PqsE, possibly due to competition between RhlR and other proteins for PqsE binding. Our results provide a foundation for the identification of the in vivo PqsE catalytic function and, potentially, new proteins involved in P. aeruginosa quorum sensing. IMPORTANCE Pseudomonas aeruginosa causes hospital-borne infections in vulnerable patients, including immunocompromised individuals, burn victims, and cancer patients undergoing chemotherapy. There are no effective treatments for P. aeruginosa infections, which are usually broadly resistant to antibiotics. Animal models show that, to establish infection and to cause illness, P. aeruginosa relies on an interaction between two proteins, namely, PqsE and RhlR. There could be additional protein-protein interactions involving PqsE, which, if defined, could be exploited for the design of new therapeutic strategies to combat P. aeruginosa . Here, we reveal previously unknown protein interactions in which PqsE participates, which will be investigated for potential roles in pathogenesis.more » « less
-
Abstract The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.more » « less
An official website of the United States government
